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Abstract—Observed social networks are often considered as
proxies for underlying social networks. The analysis of observed
networks oftentimes involves the identification of influential nodes
via various centrality metrics. Our work is motivated by recent
research on the investigation and design of adversarial attacks on
machine learning systems. We apply the concept of adversarial
attacks to social networks by studying strategies by which an
adversary can minimally perturb the observed network structure
to achieve their target function of modifying the ranking of nodes
according to centrality measures. This can represent the attempts
of an adversary to boost or demote the degree to which others
perceive them as influential or powerful. It also allows us to
study the impact of adversarial attacks on targets and victims,
and to design metrics and security measures that help to identify
and mitigate adversarial network attacks. We conduct a series
of experiments on synthetic network data to identify attacks
that allow the adversarial node to achieve their objective with a
single move. We test this approach on different common network
topologies and for common centrality metrics. We find that there
is a small set of moves that result in the adversary achieving
their objective, and this set is smaller for decreasing centrality
metrics than for increasing them. These results can help with
assessing the robustness of centrality measures. The notion of
changing social network data to yield adversarial outcomes has
practical implications, e.g., for information diffusion on social
media, influence and power dynamics in social systems, and
improving network security.

Index Terms—Social Network Analysis, Adversarial Attacks,
Network Robustness, Centrality Measures

I. INTRODUCTION

Social network analysis (SNA) is a common approach for
studying complex systems constituting interaction between
social agents. A typical starting step for a SNA is the con-
struction of a social network based on observed data, with the
assumption that this network reflects or closely approximates
the true underlying network. This step is often followed
by the identification of influential nodes in the network via
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Fig. 1: Example: network analysis of an observed network.
The adversarial node (red) adds a new node not present in the
underlying network (e.g., creating a fake account), hides its
ties to other nodes (e.g., unfriending accounts), and prevents
two nodes from being observed (e.g., getting other accounts
deactivated or deleted). Refer to figure 2 for legend.

centrality measures. The topmost influential nodes can be
further analyzed and their network position interpreted based
on the given research question and content domain.

In this paper, we study the scenario where an adversar-
ial node in the underlying network is used to or aims to
manipulate the observed network (see Figure 1) in order
to change (increase or decrease) its observed ranking based
on common centrality measures. Our problem formulation
is motivated by two aspects. First, we aim to advance our
understanding of the susceptibility of centrality measures to
noisy measurements of a network [1]. Second, we leverage
recent progress with studying adversarial attacks on automated
systems, in particular prior work on fooling machine learning
systems built for classifying images [2], [3], audio data [4],
text data [5], and more recently network data [6], to examine
the impact of adversarial attacks on the perception of the
power and influence of individual nodes in networks. Our
work focuses on studying an adversary’s ability to manipulate
its ranking with respect to other nodes in the network as
opposed to its classification label. Likewise, our framework
also allows to study the susceptibility of targets to these
attacks. Manipulating the perception of a node’s influence has
real-world applications, e.g., boosting the ranking of a website.
Similarly, there are use cases for appearing less influential,
e.g., authorities may want to understand adversarial strategies
for concealing influence in networks, vulnerable agents or or-
ganizations may wish to diminish their measurable relevance,
and individuals may seek increased privacy protection through



obfuscating their power rankings [7].
We conduct a systematic set of controlled experiments,

where we test the impact of parameter settings for network
topology, adversarial moves, and rank change direction (in-
crease or decrease) on centrality metrics. These experiments
focus on finding single adversarial moves that result in moving
a node from the bottom x (=10) percentile to appear in the
top y (=10) percentile of centrality values and vice versa.
Our work is most closely related to that of Waniek and
colleagues [7], who focused on adversarial attacks that make
nodes and communities appear less influential (called node
and community hiding) through local network changes.

Our findings suggest that a small set of local and global
moves can enable an adversary to change its rank drastically
across various network types and centrality measures. We im-
plemented our approach in a tool [8]1 that allows researchers
to simulate adversarial attacks on their network data.

We believe our work can help in furthering research on
the robustness of centrality measures against adversarial at-
tacks. Our work also contributes to transferring concepts and
advances from the area of adversarial attacks on machine
learning systems to the SNA domain.

II. RELATED WORK

A. Adversarial Attacks

Adversarial attacks have been popularized in the field of
machine learning owing to the theory of Generative Adver-
sarial Networks (GANs) [2]. GANs utilize a generator and a
discriminator, each aimed at increasing the loss of the other by
changing its output. GANs are capable of generating sample
data that closely resemble the distribution of the input data.
Work in this area has led to research on generating adversarial
examples [9] by making manipulations to the input data that
are imperceptible to humans (i.e., the change in features is
small as measured by some distance metric). These adversarial
examples can cause a machine learning classifier to predict
a label of their choice. For example, [3] have shown that
minimal modifications of a stop road sign, e.g., with stickers
or graffiti, can trick a classifier to interpret the image as a
speed limit sign. While this approach has been popular is the
domain of computer vision, this general notion has also been
applied to other fields, such as text classification [5], speech
recognition [4], and node classification in networks [10]. For
text classification models, adversarial attacks have been used
to change text elements, such as (characters in) words, to fool
a machine learning algorithm into flipping the sentiment label
for a piece of text data, e.g., from positive to negative [5].
In speech to text recognition, adversarial attacks have been
used to perturb an audio waveform to change the output of
the model to any desired text [4]. These approaches are often
called targeted attack. A comparison of various approaches is
presented in Table I. In this paper, we build upon this prior
research by searching for strategies for generating minimal

1https://github.com/uiuc-ischool-scanr/social-network-adversarial-
perturbations

modifications of network data that result in changing the
assessment of the power and influence of individual nodes
in networks.

B. Adversarial Attacks on Social Networks

The notion of changing social network data to yield vari-
ous adversarial outcomes has practical implications, e.g., for
information diffusion on social media and in offline networks,
influence and power dynamics in social systems, recommender
systems, link prediction, and network security.

Waniek and colleagues [7] used a method called ROAM
(Remove One, Add Many) to hide nodes from detection based
on various ranking measures in social networks. Our work is
closely related to theirs in that both papers model the notion of
node hiding via changes to the local neighborhood of a node.
However, our approach is broader as we also consider changes
to the whole network, as well as aim to make the adversarial
node more prominent in the network. Our framework can also
be extended to study strategies for making network metrics
more robust to adversarial pertubations. A brief comparison
of Waniek’s and our approach is provided in Table II. Yu
et al. [10] model a social network as a Stackelberg game
between a defender and an attacker to represent targeted
information propagation in a network. Zhang et al. [12] modify
the PageRank algorithm to render it insensitive to collusion
attempts. Wang et al. [11] propose GraphGAN, which uses
a GAN to boost the performance of various graph analysis
tasks, such as recommendation systems, link prediction, and
node classification. Moreover, Tang et al. [13] used Topical
Affinity Propagation to model topical social influence in large
networks. Based on that, they created an analysis framework
inspired by the design of viral marketing strategies to identify
a set of individuals who can be targeted for spreading content
to maximize influence in a social network.

C. Network Robustness

A social networks is represented as a graph (sets of vertices
and edges) G = (V,E). An adversary’s goal can be assumed
to be measured by some target function (e.g. ∆centrality ≥ δ),
owing to some constraints (e.g. ∆G ≤ ε). The purpose of
an adversary may be to change the perception of the power
and influence of some (groups of) nodes and edges. Prior
work has looked at the robustness of graph analytic metrics to
such changes. Borgatti et al. [1] utilize random perturbations
to the nodes and edges of a network to study how node
centrality rankings change and which centrality measures are
robust to this noise. We borrow ideas from this approach,
but focus on creating targeted attacks to change a specific
(adversarial) node’s ranking. Valente et al. [14] found that
centrality measures are strongly correlated on average but
provide distinct information in symmetric networks. Karrer et
al. [15] used an information-theoretic distance method called
variation of information to test the robustness of network
community structure to network perturbations. Author name
disambiguation playes a key role in constructing networks
from observed data. Kim et al. [16], [17] evaluated the impact
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Domain Case Possible Attack Goal

Image Image generation Generative Adversarial Networks [2] Improve the image generation

Text Sentence labeling Change text elements (characters or words) [5] Change target label

Audio Speech recognition Add noise to audio signal [4] Change target words or phrases

Networks Recommender system; Information diffu-
sion; Social influence; Network security

GraphGAN [11]; Add/remove nodes and edges
[7]

Improve link prediction; Change rele-
vance of nodes and edges

TABLE I: Comparison of Adversarial attacks in different domains

Waniek et al., 2018 [7] Ours

Goal Node hiding Node hiding or node prominence
Allowed changes Local edge changes Local + Global edge changes, addition of nodes (e.g., introducing fake

identities), removal of nodes (e.g., deleting accounts)
Attack success criteria Decrease in ranking Moving from top x (=10) percentile in centrality metric ranking to bottom

y (=10) percentile (and vice-versa)
Ranking criteria Centrality measures and models of influence
Experimental costs of
adversarial move

3 1 (stricter)

Experiments Apply ROAM in multiple rounds Exhaustive search over possible moves in synthetic small-scale networks

TABLE II: Comparison of our approach to Waniek et al. [7]

of insufficient or incorrect author name disambiguation on
scholarly network metrics, the detection of key players and
network topologies, and assumptions about underlying social
processes to applicable theories of link formation in co-author
networks. The idea was also extended to email networks in
Diesner et al. [18]. Mishra et al. [19] have shown how flawed
author name disambiguation can lead to wrong conclusions
about gender bias in science. Our work is related to this
area of research, which examines how flaws in network
data construction and pre-processing can incorrectly inflate or
discredit the influence of nodes.

III. METHODS

A. Experimentation Design

To understand the effects of an adversarial attack on a
network and finding the perturbations that manipulate the
network according to given target criteria, we designed an
experimental framework. On a high level, our experiments
can be described as a) an adversary making changes to the
network via a set of moves, b) evaluating changes in the
adversary’s centrality, and c) selecting the optimal (based
on criteria described below) move set that can achieve the
adversary’s goal of either increasing or decreasing its centrality
sufficiently. A more detailed description is provided next:

1) Adversarial Node Sampling: For a given network, iden-
tify an adversarial node by randomly selecting a node from a
pre-specified percentile for a centrality metric of choice. For
instance, we can select a node from among the top x (=10) or
bottom y (=10) percentile based on betweenness centrality.

2) Adversarial Moves: In general, a network can be
changed by either adding or removing nodes or edges. How-
ever, in practice, each of these changes may have associated
costs that vary depending on the location of the node in the
network, network structure, node evaluation metrics, and social
context. In our experiments, we classify the set of allowed

moves as local moves that can be performed within an ego
network, or global moves that are performed anywhere in the
network. Examples of possible local and global moves are
shown in Figure 2. In practice, local moves may be less costly
compared to global moves. For instance, removing an edge to
an immediate friend may be cheaper than removing the edge
between a friend and their other friend. An example of local
move is deleting a friend on Facebook, which requires one
click and does not need the permission of the other party or
multiple users.

3) Evaluate Perturbed Network: Using the set of adver-
sarial moves as a reference, the framework tries each move,
and computes the evaluation metrics for the adversarial node.
Each move results in the reduction in budget for future moves
based on its move cost. Successive moves are applied to
the updated network until the adversary’s goal is achieved
or the move budget is exhausted. The move set which op-
timized the evaluation metric the most is recorded. If multiple
moves result in the same change in evaluation metrics, we
keep all the moves. An important subtlety here is that at
each move in the move set, the framework takes a greedy
approach in carrying out that move. For example, on a move
self remove edge friend with the evaluation target being a
decrease in closeness centrality, the framework will try all
possible changes for the sampled nodes, and perform the move
that is equivalent to removing an edge to the immediate friend
of the target node. The move that satisfies the evaluation
criterion (decreasing closeness centrality) was selected as the
optimal move, and the adversarial perturbation was considered
a success. This methodology extends to all of the moves
and sets of moves that result in a perturbation, and to all
perturbations found by our framework.

B. Experimental Setup
We aim to identify if cheap (cost=1) adversarial pertur-

bations (across moves with uniform cost) can be identified
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Fig. 2: Possible move set for an adversarial node (red) in a network

across a variety of network topologies. Our goal is to identify
if we can successfully increase or decrease four commonly
used centrality measures (degree, closeness, betweenness, and
eigenvector) via cheap moves from the local and global move
sets for a randomly selected adversarial node. Our generated
experimental data is available from [20]2.

1) Network Generation: We assess our approach across 100
random networks based on common network topologies. Each
network consists of 20 nodes (except for cellular network).
We considered the following topologies:

• Small-World Network: A small-world network is param-
eterized via k and p. The parameter k defines the number
of neighbors that a new node could be further connected
to in the graph generation. The parameter p defines the
probability of rewiring an edge. We used p = 0.2 and
k = 4 for small-world network generation [21], [22].

• Scale-Free Network: Scale-free networks are parame-
terized via m. Here, m represents the number of edges
which a newly introduced node will create. We used
m ∈ [3, 5] for generating scale-free networks [23].

• Random Network: The random network parametrized
via p. Here, p is the probability of creating a new edge
when generating the network. We used p = 0.2 for
generating random networks [24].

• Cellular Network: We generate cellular networks by
combining five random networks (with a p = 0.2 as
discussed previously) with 20 nodes for each network
(total 100 nodes). We combined the five random networks
by allowing them to be connected via one edge. This

2Simulated data: https://doi.org/10.13012/B2IDB-2134305 V1

means that one of the five clusters would have four
randomly created edges that connected that cluster to the
other four clusters.

2) Centrality Measurement: An adversary’s power and
influence in the network is measured using the following
standard centrality measures:

• Degree centrality: number of neighbors per node;
• Closeness centrality: measures how close a node is to

other nodes in the network. The more central a node, the
closer that node to all other nodes;

• Betweenness centrality: measures the number of times a
node is located on the shortest path between other nodes.
This measure indicates which nodes can act as bridges
between nodes;

• Eigenvector centrality: is recursively defined as being
connected to other influential nodes with respect to node
degree.

3) Sampling Tier: We used a random sampling strategy for
each experiment to pick an adversarial node. We rank-ordered
the nodes in a network based on their percentile ranks for a
given centrality measure. The percentiles were divided into
10 tiers, and nodes were placed into related tiers. Nodes were
randomly sampled from the specified tier. In this study, we
experimented with performing adversarial perturbations for the
lowest percentile 0-10%, and highest percentile 90-100% of
nodes. The goal for the adversarial node was to either increase
(from the bottom 10% to the top 10%) or decrease (from the
top 10% to the bottom 10%) its rank.

4) Reach Type: We evaluated the effect of the adversarial
attack for two different types of moves (Reach Type):

https://doi.org/10.13012/B2IDB-2134305_V1


• Local moves: perform the adversarial attack on the ad-
versary’s ego network. This represents a low-cost move.

• Global level moves: perform the adversarial attack any-
where in the network, including moves to the adversary’s
ego-network. Modifications to nodes and ties outside of
the ego network can represent high-cost moves.

IV. RESULTS

Before delving into the analysis, it is important to note that
the centrality measures we consider for our analysis are highly
correlated with each other as shown in [14]. Hence, it is natural
that if an adversarial move results in the change of a centrality
measure in a specific direction, the change might be similar
for other centrality measures.

A. Optimal moves across configurations

Our first analysis deals with identifying the frequency of
various optimal moves across different combinations of net-
work types, centrality measures, change direction, and reach
type.

First, we consider random graphs (see Figure 3). We find
that the remove node to self and self remove edge friend
are the most frequently selected adversarial moves across
all network types for decreasing influence. We also observe
that this trend is same across local and global reach. The
pattern is more diverse for increasing influence, where the
most prominent move sets differ for local and global reach
type. In-fact, for increasing influence, adding an edge outside
of the ego network is most effective.

Second, we turn to scale-free networks (see Figure 4). Here,
the self remove edge friend is the most frequently selected
adversarial move for decreasing most centrality measures
except for degree. Furthermore, the possible adversarial moves
that result in increased centrality scores are more consistent
and limited to local moves compared to the random graphs
case.

Third, for small world networks, the patterns for centrality
decrease are similar to those for random graphs, except for
eigenvector centrality, where the most prominent move is
remove node to self. The diversity in moves for increasing
centrality is similar to those for random graphs.

Finally, for cellular networks, the patterns are similar to
those for small world networks, with slightly more prominence
of add node to self for decreasing eigenvector centrality.

Overall, we find that the dominant moves for decreasing
a node’s centrality are removing a node connected to the
adversary (ego), and removing an edge between ego and an
immediate neighbor. This pattern is consistent across vari-
ous repetitions on combinations of network types, centrality
measures, change direction, and reach type. For an increase
in centrality measures, we observe slight diversity in the
best adversarial moves across our experimental settings. It is
important to note that an adversarial move may not only affects
the centrality of an ego and its neighbors, but also the scores
of other nodes in the network. For example, removing the
edge between two node not only affects their degree centrality,

but may also affects closeness, betweeness, and eigenvector
centrality of other nodes, thereby changing the overall ranking.
We plan to investigate this kind of change to other nodes in
future work.

B. Change in centrality scores after adversarial moves

For our second analysis, we look at the absolute change in
the centrality score of the adversarial node after the adversarial
move has been made. This helps to understand the impact of
an adversarial strategy, and the sensitivity of graph metrics
to these strategies. In Figure 7, we show the distribution
of the change in the adversary’s centrality scores after the
adversarial move. The figure does not contain degree centrality
changes as these change are either ±1 for all cases. Similarly
to the previous results, we observe similar patterns resulting
from adversaries aiming at decreasing centrality scores. This
outcome is also due to the fact that global moves are a super-
set of local moves, resulting in a local move being selected
in both cases if this move is indeed optimal. However, for
increasing centrality scores, significantly larger changes were
observed due to global moves compared to local moves.

C. Adversarial Network Experimentation Tool

In order to allow other researchers to apply our adversarial
attack framework to their networks, we have developed a
tool [8] that can help with adversarial attack simulations on
networks. Our tool can be utilized for running exhaustive
search for adversarial moves with varying move costs on small
to medium sized networks. The tool is implemented in Python,
supports parallel processing, and leverages the NetworkX [25]
library for loading graph data. The tool allows users to do the
following: generate synthetic networks, import synthetic/real-
world networks, configure graph change or perturbation cri-
teria, sample nodes and experiments, find all possible graph
changes based on the configuration criteria, save simulation
steps and results to files, and visualize and plot results. This
contribution enables the reproducibility of our results and can
facilitate further research in this area.

V. CONCLUSIONS

In this work, we present a framework that allows us to
experimentally identify patterns and insights related to manip-
ulating network data such that node rankings are altered. This
can represent the attempts of an adversary to boost or demote
the degree to which others perceive them as powerful and
influential in a network. It also allows us to study the impact
of adversarial attacks on targets and victims, and to design
metrics and security measures that help to identify and mitigate
adversarial network perturbations. With this framework, an
experiment can be executed to study how an adversarial node
in a network can change its centrality ranking by perturbing
the network via local or global moves. Finally, simulations are
run to find the moves or patterns that optimize the evaluation
criteria.

Empirical findings reveal that an adversary can manipulate
a network using a limited set of moves across common
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network types, possible reach types, and centrality measures.
We also identify that the ego level moves are often sufficient
to achieve the adversary’s objective. Finally, we found that
most of the tested network topologies are susceptible to the
outlined attacks. Our findings also validate the approach taken
by Waniek et al. [7] for decreasing node ranking.

Our work can be extended such that the role of an adversary
is changed from a single node to a group or community
of nodes. Adding the ability to handle directionality and
larger graphs would also be needed for more comprehensive
experiments. This could involve performing clever random
walks, using heuristic shortcuts, or even machine learning
and deep learning to better traverse the perturbation space
without having to perform all possible exhaustive moves given
a configuration. We plan to experiments with real-world data to
study problems related to fake-news, marketing, supply chains,
and resource allocation. Finally, the vulnerability of network
metrics to these attacks can be used to inform the design of
more robust metrics and network security strategies.
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